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Abstract

Treatment of a,b-epoxyketones with 6-methyl-2-pyridone anion gives diosphenol (6-methyl-2-pyridyl)
ethers that can be cleaved to diosphenols under mild basic conditions. © 2000 Elsevier Science Ltd. All
rights reserved.
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The diosphenol (enolized a-diketone) array is found in diverse natural products,1–5 and has
synthetic utility for Claisen rearrangements,6 aldol and Michael additions,7 Wittig reactions,8

ring-cleavage reactions,9 ring-contraction reactions,10 and photochemical reactions.11 a,b-
Epoxyketones have been used as precursors of diosphenols via isomerization with strong acid in
a hydroxylic solvent.12 This procedure, however, gives variable results13 and is incompatible with
many functional groups. Treatment of a,b-epoxyketones with methoxide often gives acceptable
yields of diosphenol methyl ethers,14 but hydrolysis to the parent diosphenols requires harsh
conditions.15 The apparently simpler route, namely treatment of an a,b-epoxyketone with
hydroxide ion,16 is unsatisfactory since any diosphenol produced undergoes benzilic acid
rearrangement.17 We now report that treatment of a,b-epoxyketones with 6-methyl-2-pyridone

Scheme 1. (a) 2 Equiv. 6-methyl-2-pyridone, 0.1 equiv. KH, Bu2O–HMPA 9:1, 140°C, 6 h (conditions ‘A’), 66%; (b)
MeOTf, CH2Cl2, 25°C, 3 h, 95%; (c) 1 M aq. Na2CO3–acetone 1:1, 25°C, 12 h, 88% (of 4) Overall: 54% yield
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anion gives diosphenol (6-methyl-2-pyridyl) ethers that can be cleaved to diosphenols under mild
basic conditions (Scheme 1).

Other N-hindered18 2-hydroxyazaarenes such as 2-hydroxyquinoline and 6-phenyl-2-pyridone
may be used in this sequence but, save crystallinity of the diosphenol ether, offer no advantage
over the readily-available19 6-methyl-2-pyridone. Table 1 shows results for the transformation of
six racemic a,b-epoxyketones into diosphenols.20 Vigorous epoxide opening conditions ‘A’
(Bu2O–HMPA, 140°C)21 are required for some substrates; for 1a–c, conditions ‘B’ (2 equiv.
6-methyl-2-pyridone, 1 equiv. NaOH, s-BuOH, 100°C, 4–12 h) suffice. Complete experimental
details (including spectral data) for the preparation of 4d from 1d are provided as a footnote.22

Table 1
Step synthesis of diosphenols. P=6-methyl-2-pyridyl; P+=N,6-dimethyl-2-pyridinium
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The ability of 2-pyridolates to function as hydroxide equivalents requires pyridine-oxygen
fission during hydrolysis of the quaternized ethers, presumably via decomposition of the
tetrahedral intermediate 8 (Scheme 2).

Our reaction sequence fails in the case of either 10a or 10b, when the major product is 11
(Scheme 3).

6-Methyl-2-pyridone and related compounds may be used in the Mitsunobu reaction to invert
alcohols (including those sensitive to acid and/or strong base). We will give details of this
procedure shortly.
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isophorone oxide in 2 mL Bu2O was added rapidly, the mixture was heated at reflux for 6 h, cooled, diluted with
100 mL of ether and washed successively with 3×50 mL of water and 50 mL of brine. Evaporation of the
MgSO4-dried extract, followed by evacuation at the oil pump gave 4.5 g of a residue which was chromatographed
on 180 g of silica gel (Davison, 235–400 mesh) packed in cyclohexane/EtOAc (4:1) to afford 1.72 g (70%) of 2d.
IR 1680, 1599 cm−1; 60 MHz NMR d 1.05 (s, 6H), 1.85 (s, 3H), 2.3–2.5 (m, 7H), 6.49 (d, J=4.5 Hz, 1H), 6.61
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7.18. A 2.45 g (10 mmol) portion of 2d was added at 0°C, under N2, to a stirred solution of 1.5 mL (11 mmol)
of methyl triflate in 10 mL of dry CH2Cl2 and kept at this temperature for 0.5 h and then at room temperature
for 2.5 h. The solvent was evaporated, then 10 mL of tetrachloroethylene was added and evaporated, ultimately
at the oil pump, giving 3.74 g (91%) of 3d as a solid. IR 1685, 1636, 1586, 1497 cm−1; 60 MHz NMR d 1.14 (s,
6H), 1.98 (s, 3H), 2.35 (s, 2H), 2.55 (s, 2H), 2.70 (s, 3H), 4.05 (s, 3H), 7.00 (d, J=8 Hz, 1H), 7.30 (d, J=8 Hz,
1H), 8.00 (t, J=8 Hz, 1H). This solid was added to a mixture of 5 mL of a 1 M aq. Na2CO3 solution and 5 mL
of acetone and stirred overnight. The solvent was evaporated and the residue was suspended in 50 mL of ether
and extracted with 3×50 mL of an ice-cold 1 M NaOH solution in MeOH/water 1:1. The comb. aq. methanolic
extracts were neutralized with ice-cold 3 M aq. HCl (about 50 mL) and extracted with 3×50 mL of CH2Cl2. The
comb. organic extracts were washed successively with a 50 mL satd NaHCO3 solution and 50 mL of brine. The
MgSO4-dried extract was evaporated to give 1.3 g of crude product which, after filtration in 5 mL of CH2Cl2
through a 1 g plug of silica gel, concentration and crystallization from hexane, gave 1.21 g (86%) of 4d, mp
91–92°C, mp, mixed mp and spectra identical to an authentic sample prepared according to Ref. 9d. Triflate salt
3d could be converted to the highly-crystalline hexafluorophosphate by adding a 0.411 g (1 mmol) portion of it
to a stirred solution of 1.0 g of NaPF6 in 5 mL of MeOH, then evaporating. The residue was suspended in 50
mL of CH2Cl2 and washed with 3×25 mL of water. Evaporation of the MgSO4-dried extract gave a solid which
was crystallized from abs. EtOH, to give 0.36 g (90%) of white plates, mp 168–170°C. Anal. calcd for
C16H22F6NO2P: C, 47.40; H, 5.50. Found: C, 47.20; H, 5.54.

.


