

Conversion of α , β -epoxyketones to diosphenols using 6-methyl-2-pyridone anion as an hydroxide equivalent

Anthony A. Ponaras* and M. Younus Meah

Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA

Received 4 September 2000; accepted 22 September 2000

Abstract

Treatment of α,β -epoxyketones with 6-methyl-2-pyridone anion gives diosphenol (6-methyl-2-pyridyl) ethers that can be cleaved to diosphenols under mild basic conditions. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: diosphenols; α-diketones; diosphenol ethers; α,β-epoxyketones; 6-methyl-2-pyridone; 2-pyridones; hydroxide equivalent.

The diosphenol (enolized α -diketone) array is found in diverse natural products, ^{1–5} and has synthetic utility for Claisen rearrangements, ⁶ aldol and Michael additions, ⁷ Wittig reactions, ⁸ ring-cleavage reactions, ⁹ ring-contraction reactions, ¹⁰ and photochemical reactions. ¹¹ α,β -Epoxyketones have been used as precursors of diosphenols via isomerization with strong acid in a hydroxylic solvent. ¹² This procedure, however, gives variable results ¹³ and is incompatible with many functional groups. Treatment of α,β -epoxyketones with methoxide often gives acceptable yields of diosphenol methyl ethers, ¹⁴ but hydrolysis to the parent diosphenols requires harsh conditions. ¹⁵ The apparently simpler route, namely treatment of an α,β -epoxyketone with hydroxide ion, ¹⁶ is unsatisfactory since any diosphenol produced undergoes benzilic acid rearrangement. ¹⁷ We now report that treatment of α,β -epoxyketones with 6-methyl-2-pyridone

Scheme 1. (a) 2 Equiv. 6-methyl-2-pyridone, 0.1 equiv. KH, Bu₂O-HMPA 9:1, 140°C, 6 h (conditions 'A'), 66%; (b) MeOTf, CH₂Cl₂, 25°C, 3 h, 95%; (c) 1 M aq. Na₂CO₃-acetone 1:1, 25°C, 12 h, 88% (of 4) Overall: 54% yield

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(00)01691-9

^{*} Corresponding author.

anion gives diosphenol (6-methyl-2-pyridyl) ethers that can be cleaved to diosphenols under mild basic conditions (Scheme 1).

Other N-hindered¹⁸ 2-hydroxyazaarenes such as 2-hydroxyquinoline and 6-phenyl-2-pyridone may be used in this sequence but, save crystallinity of the diosphenol ether, offer no advantage over the readily-available¹⁹ 6-methyl-2-pyridone. Table 1 shows results for the transformation of six racemic α,β -epoxyketones into diosphenols.²⁰ Vigorous epoxide opening conditions 'A' (Bu₂O–HMPA, 140°C)²¹ are required for some substrates; for **1a–c**, conditions 'B' (2 equiv. 6-methyl-2-pyridone, 1 equiv. NaOH, s-BuOH, 100°C, 4–12 h) suffice. Complete experimental details (including spectral data) for the preparation of **4d** from **1d** are provided as a footnote.²²

Table 1 Step synthesis of diosphenols. P=6-methyl-2-pyridyl; P+=N,6-dimethyl-2-pyridinium

α,β-epoxyketone	6-Me-2-pyridyl ether	N-Me pyridinium salt	diosphenol	yield
O CH ₃	OP CH₃	OCH ₃	O CH ₃	67%
la	2a (78%, B)	3a (95%)	4a (90%)	
O CH ₃	OP CH ₃ 2b (72%, B)	OP+ 3b (91%)	OH OH 4b (87%)	57%
ОН	OP H	OP+	O H	52%
1c OCH ₃	2c (68%, B) OP CH ₃ OP 2d (70%, A)	3c (90%) OP+ 3d (91%)	4c (85%, enols) OH 4d (86%)	55%
tBu OCH ₃	tBu OP CH ₃ OP 2e (30%, A)	tBu OP+ 3e (89%)	tBu CH ₃ OH 4e (78%)	21%
o o o	OP 2f (68%, A)	OP+ 3f (88%)	OH 4f (92%)	55%

The ability of 2-pyridolates to function as hydroxide equivalents requires pyridine-oxygen fission during hydrolysis of the quaternized ethers, presumably via decomposition of the tetrahedral intermediate 8 (Scheme 2).

Scheme 2.

Our reaction sequence fails in the case of either 10a or 10b, when the major product is 11 (Scheme 3).

Scheme 3.

6-Methyl-2-pyridone and related compounds may be used in the Mitsunobu reaction to invert alcohols (including those sensitive to acid and/or strong base). We will give details of this procedure shortly.

References

- Flavor and fragrance substances. (a) Arnarp, J.; Dahlin, B. M.; Enzell, C. R.; Pettersson, T.; Weidemann, G. Acta Chem. Scand. 1991, 45, 105. (b) Kaiser, R.; Lamparsky, D.; Schudel, P. J. Agric. Food Chem. 1975, 23, 943.
 (c) Gianturco, M. A.; Friedel, P.; Krampl, V.; Radford, T.; Renner, J. A.; Shephard, F. W. J. Agric. Food Chem. 1971, 19, 530. (d) Pittet, A. O.; Rittersbacher, P.; Muralidhara, R. J. Agric. Food Chem. 1970, 18, 929.
- Sesquiterpenes. Guianolides: (a) De Hernandez, Z. N. J.; Hernandez, L. R.; Catalan, C. A. N.; Gedris, T. E.; Herz, W. *Phytochemistry* 1997, 46, 721. Pipitzols: (b) Joseph-Nathan, P.; Roman, L. U.; Hernandez, J. D.; Taira, Z.; Watson, W. H. *Tetrahedron* 1980, 36, 731. Deodardione: (c) Krishnappa, S.; Dev, S. *Tetrahedron* 1978, 34, 599.
- 3. Diterpenes. Abietanes: (a) Ulubelen, A.; Topcu, G.; Chai, H.-B.; Pezzoto, J. M. *Pharm. Biol. (Lisse, Neth.)* 1999, 37, 148. (b) Topcu, G.; Ulubelan, A. *J. Nat. Prod.* 1996, 59, 734. neo-Clerodanes: (c) Rodriguez-Hahn, L.; Esquivel, B.; Cardenas, J. *Prog. Chem. Org. Nat. Prod.* 1994, 63, 107. (d) Carreiras, M. C.; Rodriguez, B.; Piozzi, F.; Savona, G.; Torres, M. R.; Perales, A. *Phytochemistry* 1989, 28, 1453. Pygmaeocine E: (e) Meng, Q.; Zhu, N.; Chen, W. *Phytochemistry* 1988, 27, 1151.
- Degraded triterpenes. Bruceantin and the quassinoids: (a) Okano, M.; Fukamiya, N.; Lee, K. H. In Studies in Natural Product Chemistry, Structure and Chemistry (Part A); Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1990; Vol. 7, pp. 369–404. (b) Polonsky, J. Prog. Chem. Org. Nat. Prod. 1985, 47, 221. Cucurbitacins: (c) Galindo, A.; Villegas, N.; Mansilla, H. Nat. Prod. Lett. 1999, 13, 285. (d) Hylands, P. J.; Mansour, E.-S. S. J. Chem. Soc., Perkin Trans. 1 1983, 2821. (e) Lavie, D.; Glotter, E. Fortschr. Chem. Org. Naturst. 1971, 29, 307. Limonoids: (e) Taylor, D. A. H. Prog. Chem. Org. Nat. Prod. 1984, 45, 1 (see p. 61).

- Steroids. Solanudine alkaloid: (a) Usubillaga, A. Phytochemistry 1988, 27, 3031. Bufadienolides and cardenolides: (b) Chen, R. F.; Abe, F.; Yamauchi, T.; Taki, M. Phytochemistry 1987, 26, 2351. (c) Spengel, S.; Linde, H. H. A.; Meyer, K. Helv. Chim. Acta 1973, 56, 2827. 4-Hydroxy-3-keto-Δ⁴ steroids are inhibitors of aromatase: (d) Brodie, A. M. H.; Garrett, W. M.; Hendrickson, J. R.; Tsai-Morris, C.-H.; Marcotte, P. A.; Robinson, C. H. Steroids 1981, 38, 693. (e) Martin, M. B.; Mateos, A. F.; Gonzalez, R. R. J. Chem. Soc., Perkin Trans. 1 1995, 569
- (a) Ponaras, A. A. J. Org. Chem. 1983, 48, 3866 and previous papers cited therein. (b) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 2000, 122, 3785. (c) Hunt, D. A. US Patent, US 4,463,184; Chem. Abstr. 1986, 102, 6182g. See also: (d) Koreeda, M.; Luengo, J. I. J. Am. Chem. Soc. 1985, 107, 5572.
- 7. Utaka, M.; Kuriki, H.; Sakai, T.; Takeda, A. J. Org. Chem. 1986, 51, 935 and references therein.
- 8. Saalfrank, R. W.; Schierling, P.; Schatzlein, P. Chem. Ber. 1983, 116, 1463.
- 9. Beckmann fragmentation of α-ketooximes: (a) Conley, R. T.; Ghosh, S. *Mech. Mol. Migr.* **1971**, *4*, 233*ff.* (b) Hassner, A.; Wentworth, W. A.; Pomerantz, I. H. *J. Org. Chem.* **1963**, *28*, 304. Fission of α-diketone monothioketals: (c) Takano, S.; Hatakeyama, S.; Ogasawara, K. *J. Am. Chem. Soc.* **1979**, *101*, 6414. Oxidative cleavages: (d) Payne, G. B. *J. Org. Chem.* **1959**, *24*, 719. See, also, Ref. 7.
- Benzilic acid rearrangement: Inter alia (a) Dunlap, N. K.; Gross, R. S.; Watt, D. S. Synth. Commun. 1988, 18, 13. Wolff rearrangement of α-diazoketones: (b) Gill, G. R. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 3, pp. 887–912. (c) Stetter, H.; Kiehs, K. Chem. Ber. 1965, 98, 1181. (d) Blomquist, A. T.; Schlaefer, F. W. J. Am. Chem. Soc. 1961, 83, 4547.
- 11. (a) Feigenbaum, A.; Fort, Y.; Pete, J.-P.; Scholler, D. J. Org. Chem. 1986, 51, 4424 and references cited therein. (b) Matoba, K.; Karibe, N.; Yamazaki, T. Bull. Chem. Soc. Jpn. 1984, 32, 2639. (c) Tonari, K.; Ichimoto, I.; Ueda, H. Agric. Biol. Chem. 1980, 44, 2185. (d) Matsumoto, T.; Shirahama, H.; Ichihara, A.; Kagawa, S.; Matsumoto, S. Tetrahedron Lett. 1969, 4103.
- 12. Reaction conditions are very important. Isophorone oxide, for example, gives moderate yields of 2-hydroxy-isophorone when treated with (a) 2% aq. sulfuric acid (Langin-Lanteri, M. T.; Huet, J. *Synthesis* 1976, 541) or with (b) 37% aq. HCl (Ref. 9d) but only a 3% yield of diosphenol when treated with (c) BF₃·Et₂O in benzene (in this non-basic solvent the major products result from ring-contraction—House, H. O.; Wasson, R. L. *J. Am. Chem. Soc.* 1959, 79, 1488).
- 13. The isomerization involves regiospecific epoxide fission to generate partial positive charge at the β-carbon atom. Thus, it is not surprising that β-unsubstituted-α,β-epoxyketones (such as 1c) give poor yields of diosphenols and that verbenone oxide or 2,3-epoxy-3-t-butylcycloalkanones give mainly skeletally-rearranged products: (a) Ponaras, A. A. unpublished. Acid treatment of 4β,5β-epoxy-3-ketosteroids gives mainly 2α-hydroxy-3-keto-Δ⁴ steroids, probably via the alternative regiochemical sense of epoxide fission: (b) Camerino, B.; Patelli, B.; Vercellone, A. J. Am. Chem. Soc. 1956, 78, 3540. (c) Burnett, R. L.; Kirk, D. N. J. Chem. Soc., Perkin Trans. 1 1973, 1830.
- Inter alia: (a) Reusch, W. R.; LeMahieu, R. J. Org. Chem. 1963, 28, 2443. (b) Gianturco, M. A.; Friedel, P. Tetrahedron 1963, 19, 3980. (c) Tobias, M. A.; Strong, J. G.; Napier, R. P. J. Org. Chem. 1970, 35, 1709.
- 15. Typical conditions are hydrochloric acid in boiling ethanol (see, for example, Ref. 14a). Treatment of diosphenol methyl ethers with trimethylsilyl iodide gives reduction of the C=C double bond as well as demethylation: Kawada, K.; Kim, M.; Watt, D. S. *Tetrahedron Lett.* **1989**, *30*, 5985.
- 16. Some common hydroxide equivalents are either insufficiently reactive (acetate) or give ring cleavage (superoxide).
- 17. Dawson, T. M.; Littlewood, P. S.; Medcalfe, T.; Moon, M. W.; Tompkins, P. M. J. Chem. Soc. C 1971, 1292.
- 18. 2-Pyridone itself is unsatisfactory because its anion shows greater reactivity at nitrogen than at oxygen.
- 19. Commercially available from Acros, Alfa Aesar, ICN, Kingchem, Lancaster, Pfaltz and Bauer, and Sigma-Aldrich
- 20. All new substances were characterized by IR, NMR, MS and elemental analysis or HRMS.
- 21. Epoxide opening in boiling *N*-methyl- or *N*-ethylmorpholine (no added HMPA) is also satisfactory. Reaction in THF–HMPA at 67°C (cf. Schultz, A. G.; Lucci, R. D.; Fu, W. Y.; Berger, M. H.; Erhardt, J.; Hagmann, W. K. *J. Am. Chem. Soc.* **1978**, *100*, 2150) requires many days, confirming that 2-pyridolates are less nucleophilic than phenolates.
- 22. Two drops of 30% KH oil suspension were added, under N₂, to a stirred solution of 2.20 g (20 mmol) of 6-methyl-2-pyridone in 1.3 mL of dry HMPA and 10 mL of dry Bu₂O. Then a solution of 1.54 g (10 mmol) of

isophorone oxide in 2 mL Bu₂O was added rapidly, the mixture was heated at reflux for 6 h, cooled, diluted with 100 mL of ether and washed successively with 3×50 mL of water and 50 mL of brine. Evaporation of the MgSO₄-dried extract, followed by evacuation at the oil pump gave 4.5 g of a residue which was chromatographed on 180 g of silica gel (Davison, 235-400 mesh) packed in cyclohexane/EtOAc (4:1) to afford 1.72 g (70%) of 2d. IR 1680, 1599 cm⁻¹; 60 MHz NMR δ 1.05 (s, 6H), 1.85 (s, 3H), 2.3–2.5 (m, 7H), 6.49 (d, J=4.5 Hz, 1H), 6.61 (d, J=4.5 Hz, 1H), 7.35 (t, J=4.5 Hz, 1H). Anal. calcd for $C_{15}H_{19}NO_2$: C, 73.04; H, 7.08. Found: C, 72.79; H, 7.18. A 2.45 g (10 mmol) portion of 2d was added at 0°C, under N₂, to a stirred solution of 1.5 mL (11 mmol) of methyl triflate in 10 mL of dry CH₂Cl₂ and kept at this temperature for 0.5 h and then at room temperature for 2.5 h. The solvent was evaporated, then 10 mL of tetrachloroethylene was added and evaporated, ultimately at the oil pump, giving 3.74 g (91%) of **3d** as a solid. IR 1685, 1636, 1586, 1497 cm⁻¹; 60 MHz NMR δ 1.14 (s, 6H), 1.98 (s, 3H), 2.35 (s, 2H), 2.55 (s, 2H), 2.70 (s, 3H), 4.05 (s, 3H), 7.00 (d, J=8 Hz, 1H), 7.30 (d, J=8 Hz, 1H), 8.00 (t, J=8 Hz, 1H). This solid was added to a mixture of 5 mL of a 1 M aq. Na₂CO₃ solution and 5 mL of acetone and stirred overnight. The solvent was evaporated and the residue was suspended in 50 mL of ether and extracted with 3×50 mL of an ice-cold 1 M NaOH solution in MeOH/water 1:1. The comb. aq. methanolic extracts were neutralized with ice-cold 3 M aq. HCl (about 50 mL) and extracted with 3×50 mL of CH₂Cl₂. The comb. organic extracts were washed successively with a 50 mL satd NaHCO₃ solution and 50 mL of brine. The MgSO₄-dried extract was evaporated to give 1.3 g of crude product which, after filtration in 5 mL of CH₂Cl₂ through a 1 g plug of silica gel, concentration and crystallization from hexane, gave 1.21 g (86%) of 4d, mp 91–92°C, mp, mixed mp and spectra identical to an authentic sample prepared according to Ref. 9d. Triflate salt 3d could be converted to the highly-crystalline hexafluorophosphate by adding a 0.411 g (1 mmol) portion of it to a stirred solution of 1.0 g of NaPF₆ in 5 mL of MeOH, then evaporating. The residue was suspended in 50 mL of CH₂Cl₂ and washed with 3×25 mL of water. Evaporation of the MgSO₄-dried extract gave a solid which was crystallized from abs. EtOH, to give 0.36 g (90%) of white plates, mp 168-170°C. Anal. calcd for C₁₆H₂₂F₆NO₂P: C, 47.40; H, 5.50. Found: C, 47.20; H, 5.54.